

STATE OF NORTH CAROLINA DEPARTMENT OF TRANSPORTATION

ROY COOPER

JAMES H. TROGDON, III

October 29, 2018

Mr. James Lastinger U.S Army Corps of Engineers 3331 Heritage Trade Drive, Suite 105 Wake Forest NC 27587

Subject: As-Built Report for Stream Mitigation Project U-2707, Forsyth County,

TIP Project No. U-2707, USACE Action ID: SAW-1998-20439,

NCDWR Project No. 2012-0470

Dear Mr. Lastinger,

Please find enclosed the As-Built Report for the subject stream mitigation project. The Division 9 Resident Engineer responsible for administering the contract has certified that the site was constructed according to the construction plan sheets, with any exceptions noted in this As-Built Report.

Elevation shots were taken during construction to ensure that the project was built in accordance with the design files. During initial survey it was noted that existing topographical elevations did not match the design file in certain areas. Adjustments were made to the stream profile after consultation with the resource agencies. These changes are noted in the attached as built plans.

Fencing was also adjusted after consultation with the resource agencies. Fencing was installed along a utility line easement along the northern portion of the site. This resulted in a loss of Type II Reforestation. Additional Type II Reforestation was completed along the southern portion of the stream to compensate for this loss. These areas are shown in the attached as built plans.

The following information has been included as part of the As-Built Report: 1) As-Built Plan Sheets, 2) Photo Point Locations, Permanent Cross-Section Locations and Vegetation Plot Maps, 3) Planting Plan and Restoration Detail Sheets. The sites will be monitored as described in the associated permit requirements.

If you should have any questions or require additional information, please contact Mr. Randy Griffin at (919) 707-6121. Thank you once again for your continued support and cooperation.

Sincerely,

Docusigned by:
Phil Harris
8C1643F6874A457

Philip S. Harris, III, P.E., CPM, Unit Head Environmental Analysis Unit

Enclosures

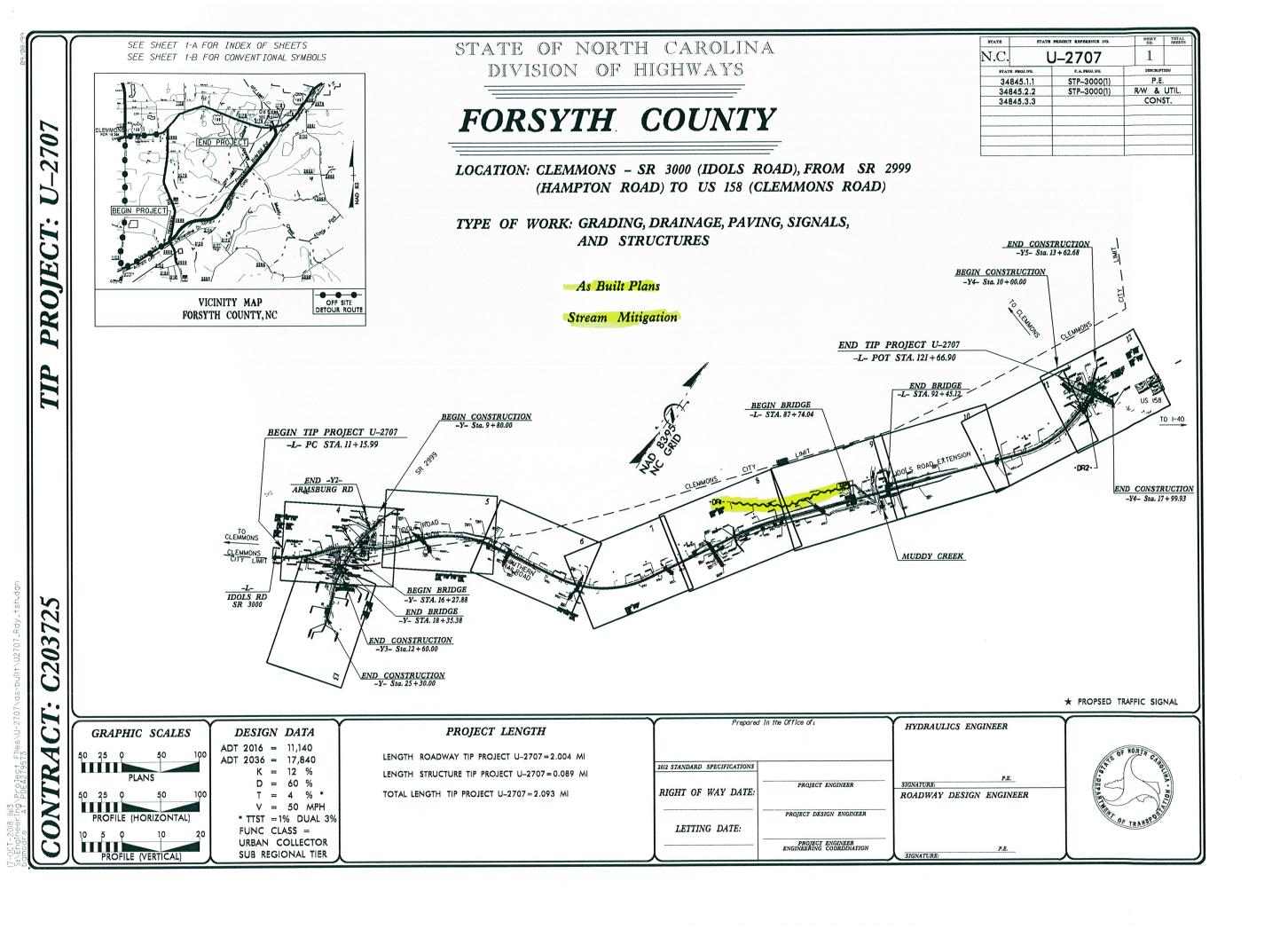
cc: Mr. Monte Matthews, USACE

Mr. Dave Wanucha, NCDWR

Ms. Amy Chapman, NCDWR

Ms. Marla Chambers NCWRC

Ms. Marella Buncick USFWS


Mr. Todd Bowers, USEPA

Mr. David Harris P.E., NCDOT- REU

Mr. Jordan Scott P.E., NCDOT-Div. 9 Resident Engineer

Ms. Amy Euliss, NCDOT-Div. 9 Environmental Officer

Mr. Randy Griffin, NCDOT-EAU

MORPHOLOGICAL MEASUREMENTS TABLE

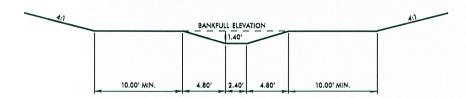
UT TO MUDDY CREEK -R1- Sta. 0+00.00 to Sta. 9+20.00

Variables	Existing Channel	Proposed Reach	USGS Station	Reference Reach
Stream type	C/E5	C5		CE 4/I
2.Drainagé area	0.49 SQ MI (316 ACRES)	0.45 SQ MI(288 ACRES)		0.55 SQ MI(355 ACRES)
3. Bankfull width	Mean: 11.36	Mean: 12.00		Mean: 15.48
	Range: 8.86-14.80	Range:		Range: 11.90-17.70
4.Bankfull mean depth	Mean: 0.72	Mean: 0.83		Mean: 1.29
NE drini dri modili dopini	Range: 0.58-0.85	Range:		Range: 1.23-1.41
5.Width/depth ratio	Mean: 15.56	Mean: 14.4		Mean: 12.97
S.Wianii acpini rano	Range: 13.65-17.48	Range:		Range: 11.42-14.37
6.Bankfull cross-sectional area	Mean: 10,77	Mean: 10.00		Mean: 21.33
5. Danki ali ci oos occironal al ca	Range: 5.93-14.00	Range:		Range: 20.00-22.70
7.Bankfull mean velocity	Mean: 5.38	Mean: 5.30		Mean: 2,90
. Banki ali meali velocity	Range:	Range:		Range:
8.Bankfull discharge,cfs	Mean: 53	Mean: 53		Mean: 58
o. Dariki dir discharge, ci s	Range:	Range:		Range:
O Dookfull may dooth		Mean: 1.40		Mean: 1.94
9.Bankfull max depth				Range: 1,60-2,12
10 110 416 - 6 61- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1- 1	Range: 0.96-2.37	Range: 1.40-1.40		Marge: 1,00 2,12
IO.Width of floodprone area	Mean: 118.67	Mean: >100,00		Mean: 171.25 Range: 162.00-186.00
// Caharant antia	Range: 48.69-180.00	Range: Mean: >2.2		Range: 162.00-186.00 Mean: 11.30
II.Entrenchment ratio	Mean: 11.41			
10.11	Range: 3,29-17.68	Range:		Range: 10.06-14.45 Mean: 80.30
I2.Meander length	Mean: 50.92	Mean: 95J0		Mean: 80.30
	Range: 31.09-73.07	Range: 80,10-102,00		Range: 64.32-114.00
13.Ratio of meander length to bankfull	Mean: 4.48	Mean: 7.93		Mean: 5.19
width	Range: 2.47-6.43	Range: 6.68-8.50		Range: 4,16-7,37
I4.Radius of curvature	Mean: 22.22	Mean: 33.47		Mean: 18.44
	Range: 10.01-32.89	Range: 28.00-49.00		Range: 11.73-25.30
15.Ratio of radius of curvature to	Mean: 1.96	Mean: 2.79		Mean: 1.19
bankf ull width	Range: 0.88-2.90	Range: 2.33-4.08		Range: 0.76-1.63
l6.Belt width	Mean: 6.38	Mean: 21.91		Mean: 31.92
	Range: 1.28-14.48	Range: 11.52-41.14		Range: 12.54-54.25
17.Meander width ratio	Mean: 0.56	Mean: 1.83		Mean: 2.06
	Range: 0JI-1.27	Range: 0.96-3.43		Range: 0.81-3.51
18.Sinuosity (stream length/valley	Mean: 1.06	Mean: IJ2		Mean: 1.41
length)	Range:	Range:		Range:
19.Valley slope	Mean: 0.00670	Mean: 0.00899		Mean: 0,01230
	Range:	Range:		Range:
20. Average slope	Mean: 0.00632	Mean: 0.0080		Mean: 0,00872
	Range:	Range: 0.0080-0.0080		Range:
21.Pool slope	Mean: 0.00606	Mean: 0.00194		Mean: 0,00221
•	Range: 0.00081-0.01136	Range: 0.00120-0.00200		Range: 0.00175-0.00267
22.Ratio of pool slope to average slope	Mean: 0.96	Mean: 0.24		Mean: 0.25
	Range: 0,13-1,80	Range: 0.15-0.25		Range: 0.20-0.31
23.Maximum pool depth	Mean: 1.94	Mean: 1.83		Mean: 2.87
	Range: 1,40-2,47	Range: 1.83-1.83		Range: 2,85-2,89
24.Ratio of pool depth to average	Mean: 271	Mean: 2,20		Mean: 2.22
bankfull depth	Range: 1.95-3.45	Range: 2.20-2.20		Range: 2.21-2.23
25. Pool width	Mean: II.69	Mean: 12.00		Mean: 16.30
	Range: 9,16-14,22	Range:		Range: 12.60-20.00
26.Ratio of pool width to bankfull	Mean: 1.03	Mean: ID		Mean: 1.05
width	Range: 0.81-1.25	Range:		Range: 0.81-1.29
27.Pool to pool spacing	Mean: 61.22	Mean: 53.50		Mean: 51.98
Litt correspondently	Range: 29.34-78.63	Range: 39.00-62.00		Range: 35.73-68.22
28. Ratio of pool to pool spacing to	Mean: 5.39	Mean: 4.46		Mean: 3.36
bankfull width	Range: 258-6.92	Range: 3.25-5,17		Range: 2,31-4,41
29.Ratio of lowest bank height to	Mean: N/A	Mean: ID		Mean: 1.06
bankfull height (or max bankfull depth		Range:		Range: 1.0-1.15
Danki uli neigili (di max banki uli depin	A HOUNGE: NA	T rionge:		Tronge. No No

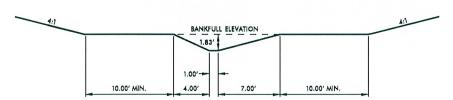
PROJECT REFERENCE NO.	SHEEL NO.
U-2707	NS-I
RW SHEET NO	
	HYDRAULICS ENGINEER

MORPHOLOGICAL MEASUREMENTS TABLE

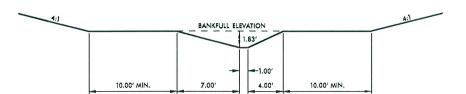
UT TO MUDDY CREEK -R1- Sta. 9 + 20.00 to Sta. 18 + 00.00


Variables	Existing	Channel	Propose	d Reach	USGS Station	Referen	ce Reach
Stream type		C/E5		C5			CE 4/I
2.Drainage area	0.49 SQ	MI (316 ACRES)	0.49 SQ	MI (316 ACRES)			MI(355 ACRES)
3.Bankfull width	Mean:	11.36	Mean:	13.96		Mean:	15.48
	Range:	8.86-14.80	Range:			Range:	11.90-17.70
4.Bankfull mean depth	Mean:	0.72	Mean:	1.07		Mean:	1.29
1. Banki an maan dapin	Range:	0.58-0.85	Range:			Range:	1.23-1.41
5.Width/depth ratio	Mean:	15.56	Mean:	13.00		Mean:	12.97
J.Widin depin rano	Range:	13.65-17.48	Range:	75.00		Range:	11.42-14.37
6. Bankfull cross-sectional area	Mean:	10.77	Mean:	15.00		Mean:	21.33
5. Dariki dir Cross Secrional di ed	Range:	5.93-14.00	Range:	15.00		Range:	20.00-22.70
7.Bankfull mean velocity	Mean:	5.38	Mean:	3.53		Mean:	2.90
. Banki ali meali velocity	Range:	3.00	Range:	3.53		Range:	2.50
O Dealify II discharge of		53	Mean:	53		Mean:	58
8.Bankfull discharge,cfs	Mean:	55		55		Range:	30
0.0-15.0-1	Range:	100	Range:	1.75		Mean:	194
9.Bankfull max depth	Mean:	1.60	Mean:			Range:	1.60-2.12
	Range:	0.96-2.37	Range:	1.61-1.76			
IO.Width of floodprone area	Mean:	118.67	Mean:	>100.00		Mean:	171.25
	Range:	48.69-180.00	Range:	100		Range:	162.00-186.00
II.Entrenchment ratio	Mean:	11.41	Mean:	>2.2		Mean:	11.30
	Range:	3,29-17,68	Range:			Range:	10.06-14.45
12.Meander length	Mean:	50.92	Mean:	97.48		Mean:	80.30
	Range:	31.09-73.07	Range:	91.07-120.51		Range:	64.32-114.00
3.Ratio of meander length to bankfull	Mean:	4.48	Mean:	6.96		Mean:	5.19
width	Range:	2.47-6.43	Range:	6.51-8.61		Range:	4.16-7.37
4.Radius of curvature	Mean:	22.22	Mean:	33.88		Mean:	18.44
	Range:	10.01-32.89	Range:	28.00-49.00		Range:	11.73-25.30
5.Ratio of radius of curvature to	Mean:	1.96	Mean:	2.42		Mean:	1.19
bankfull width	Range:	0.88-2.90	Range:	2.0-3.5		Range:	0.76-1.63
16, Belt width	Mean:	6.38	Mean:	23.20		Mean:	31.92
O. Dell Widili	Range:	1.28-14.48	Range:	12.00-44.00		Range:	12.54-54.25
17.Meander width ratio	Mean:	0.56	Mean:	1.66		Mean:	2.06
11. Wednaer Widili Lano	Range:	0JI-1.27	Range:	0.86-3.14		Range:	0.81-3.51
18.Sinuosity (stream length/valley	Mean:	1.06	Mean:	1,13		Mean:	1.41
lo acth)	Range:	1.00	Range:	135		Range:	
length)		0.00670	Mean:	0.00498		Mean:	0.01230
19.Valley slope	Mean:	0,00070		0,00430		Range:	0.012.30
00.4	Range:	0.00070	Range:	0.0044		Mean:	0.00872
20.Average slope	Mean:	0.00632	Mean:			Pagas	0.00012
	Range:	4,00000	Range:	0.0044-0.0044		Range:	0.00221
21. Pool slope	Mean:	0.00606	Mean:	0.0017		Mean:	0.00175-0.00267
	Range:	0.00081-0.01136	Range:	0.00110-0.00130			0.0011 5 -0.00261
22.Ratio of pool slope to average slope	Mean:	0.96	Mean:	0.27		Mean:	0.25
	Range:	0.13-1.80	Range:	0.25-0.30		Range:	0.20-0.31
23.Maximum pool depth	Mean:	1.94	Mean:	2.40	1	Mean:	2.87
	Range:	1.40-2.47	Range:	2.40-2.40		Range:	2.85-2.89
24.Ratio of pool depth to average	Mean:	271	Mean:	2.40		Mean:	2,22
bankfull depth	Range:	<i>1.</i> 95 <i>-3.</i> 45	Range:	2.40-2.40		Range:	2.21-2.23
25. Pool width	Mean:	11.69	Mean:	14.00		Mean:	16.30
	Range:	9,16-14,22	Range:			Range:	12.60-20.00
26.Ratio of poolwidth to bankfull	Mean:	1.03	Mean:	1,0		Mean:	1.05
width	Range:	0.81-1.25	Range:			Range:	0.81-1.29
27.Pool to pool spacing	Mean:	61,22	Mean:	56.20		Mean:	51.98
E. I. corre poor opporing	Range:	29.34-78.63	Range:	50.00-71.00		Range:	35.73-68.22
28.Ratio of pool to pool spacing to	Mean:	5.39	Mean:	4.01		Mean:	3.36
bankfull width	Range:	2.58-6.92	Range:	3.57-5.07		Range:	2.31-4.41
29.Ratio of lowest bank height to	Mean:	N/A	Mean:	1.0		Mean:	1.06
		N/A	Range:	1.0		Range:	1.0-1.15
bankfull height (or max bankfull depth) Range:	N/A	Thunge:			i nunge:	110 110

PROJECT REFERENCE NO.	SHEET NO.	
U-2707	NS-2	
RW SHEET NO.		
	HYDRAULICS ENGINEER	

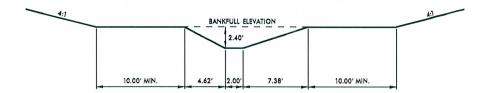

-SEP-2018 09:37 Engineering SProject Files/U-2707\as-b

R1 Sta. 0 + 00.00 to 9 + 20.00

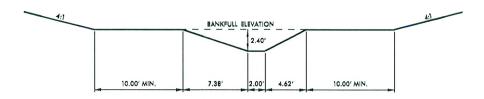

TYPICAL SECTION RIFFLE
BANKFULL AREA 10.0 SQ FT

TYPICAL SECTION POOL LEFT
BANKFULL AREA 11.9 SQ FT

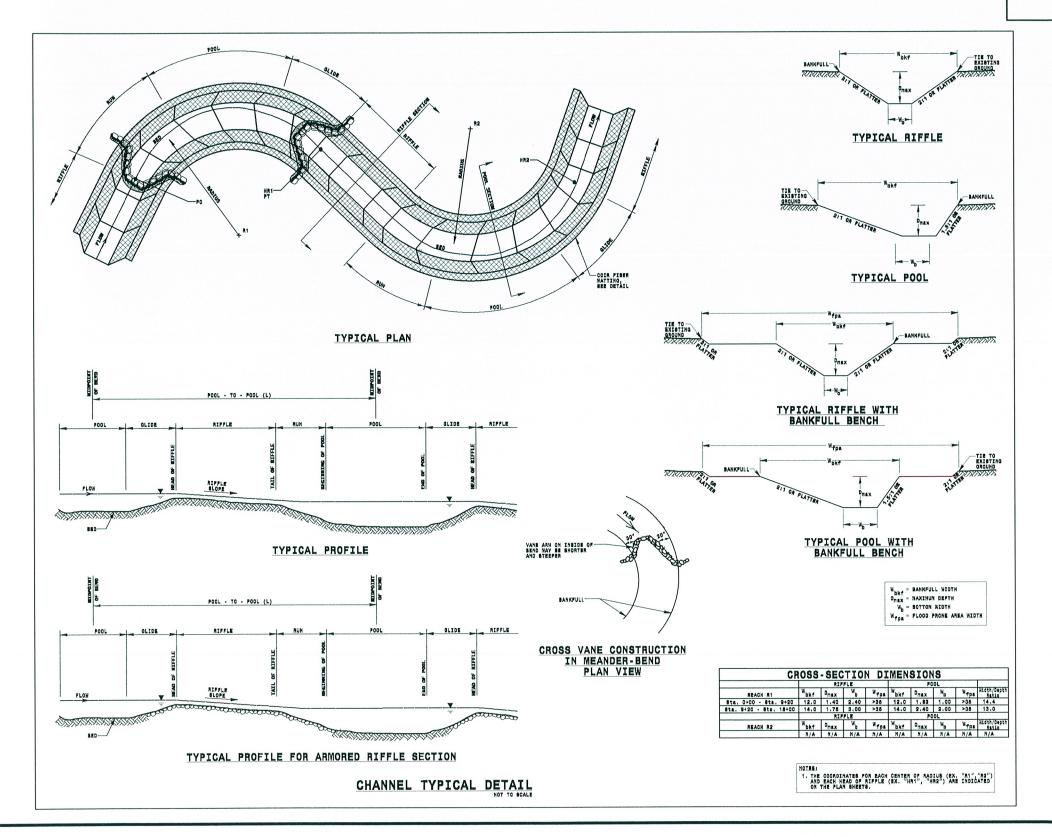
TYPICAL SECTION POOL RIGHT
BANKFULL AREA 11.9 SQ FT



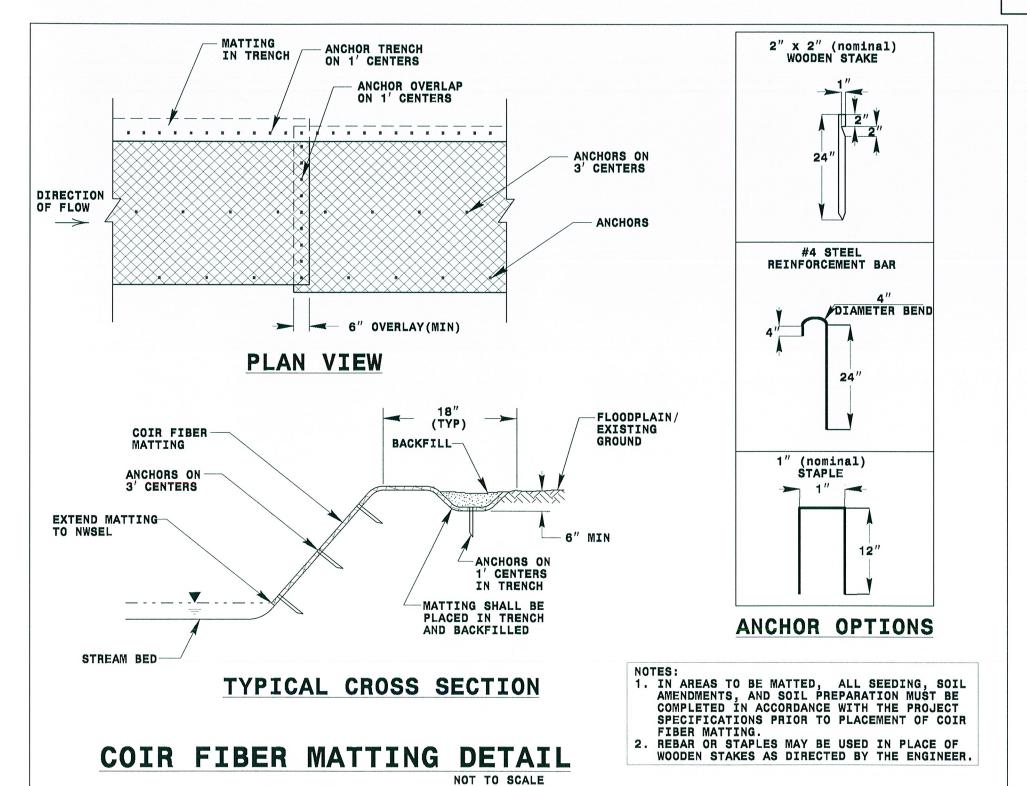
R1 Sta. 9+20.00 to 18+00.00


TYPICAL SECTION RIFFLE
BANKFULL AREA 15.0 SQ FT

TYPICAL SECTION POOL LEFT
BANKFULL AREA 19.2 SQ FT

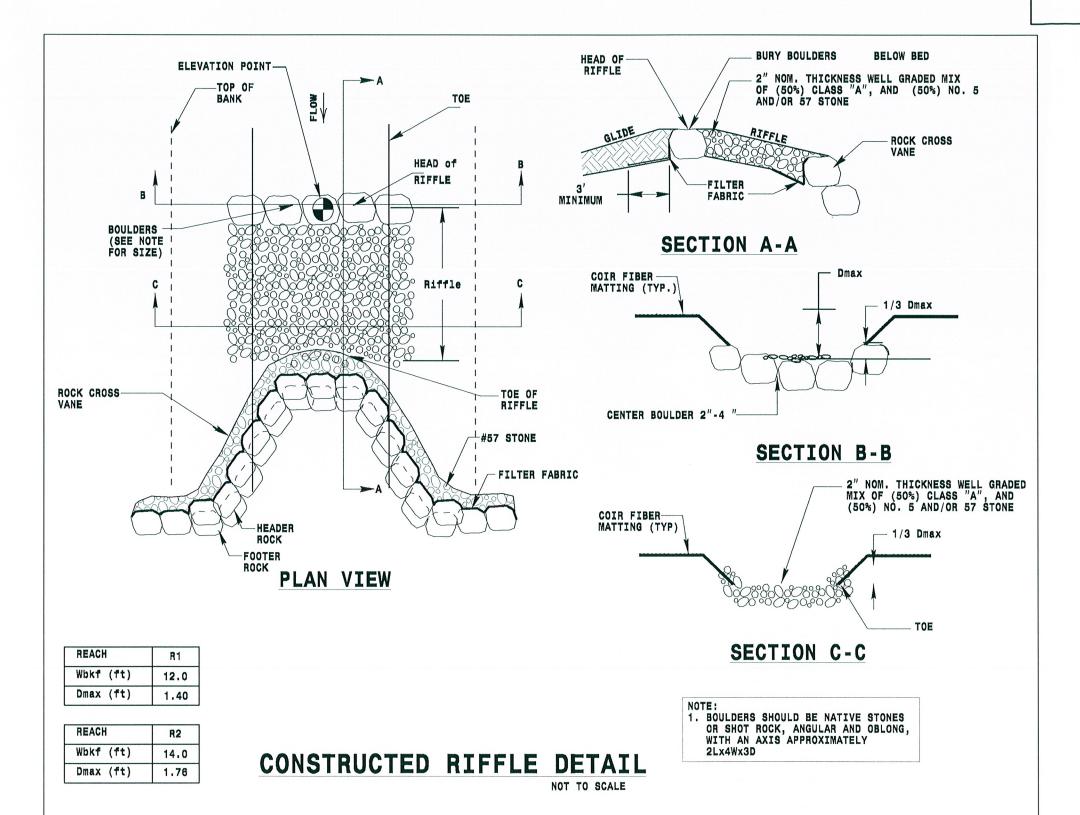

TYPICAL SECTION POOL RIGHT
BANKFULL AREA 19.2 SQ FT

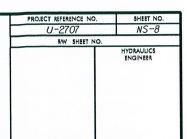
RW SHEET NO TYDRAULICS ENGINEER As Built Plans 1) All excavation shall be performed in only dry or isolated sections of channel. 2) Impervious dikes are to be used to isolate work from stream flow when necessary. 3) All graded areas shall be stabilized within 24 hours. EXAMPLE OF PUMP-AROUND OPERATION 4) Maintenance of stream flow operations shall be incidental to the work. This includes polyethylene sheeting, diversion pipes, pumps and hoses. 5) Pumps and hoses shall be of sufficicient size to dewater the work area. SEQUENCE OF CONSTRUCTION FOR TYPICAL WORK AREA SPECIAL STILLING BASIN (SEE PROJECT SPECIAL PROVISIONS) 1. INSTALL SPECIAL STILLING BASIN(S). Utilize a Stabilized Outlet Instead of a Special Stilling Basin If Pumping 2. INSTALL UPSTREAM PUMP AND TEMPORARY FLEXIBLE HOSE. Clean Water SPECIAL STILLING BASIN 3. PLACE UPSTREAM IMPERVIOUS DIKE AND BEGIN PUMPING (SEE PROJECT SPECIAL PROVISIONS) OPERATIONS FOR STREAM DIVERSION. IMPERVIOUS DIKE DEWATERING PUMP 4. PLACE DOWNSTREAM IMPERVIOUS DIKE AND PUMPING (SEE PROJECT SPECIAL PROVISIONS) APPARATUS. DEWATER ENTRAPPED AREA, AREA TO BE DEWATERED SHALL BE EQUAL TO ONE DAY'S WORK. IMPERVIOUS DIKE (SEE PROJECT SPECIAL PROVISIONS) 5. PERFORM STREAM RESTORATION WORK IN ACCORDANCE WITH THE PLANS. **EXISTING** STREAM CHANNEL 6. EXCAVATE ANY ACCUMULATED SILT AND DEWATER BEFORE REMOVAL OF IMPERVIOUS DIKES, REMOVE IMPERVIOUS DIKES, PUMPS, AND TEMPORARY FLEXIBLE HOSE. (DOWNSTREAM IMPERVIOUS DIKES FIRST). 7. ALL GRADING AND STABILIZATION MUST BE COMPLETED IN ONE DAY WITHIN **TEMPORARY** THE PUMP AROUND AREAS BETWEEN THE IMPERVIOUS DIKES. FLEXIBLE HOSE THE IMPERVIOUS DIKE LOCATIONS AS SHOWN ON THIS SHEET ONLY SHOW THE UPPER AND LOWER EXTENT OF WORK FOR EACH STREAM SEGMENT. THE CONTRACTOR IS RESPONSIBLE FOR DETERMINING THE LOCATION OF THE IMPERVIOUS DIKE(S) FOR EACH DAY'S WORK. 8. REMOVE SPECIAL STILLING BASIN(S) AND BACKFILL. STABILIZE DISTURBED AREA WITH SEED AND MULCH. SPECIAL STILLING BASIN WITH ROCK PAD / IMPERVIOUS DIKE (SEE PROJECT SPECIAL PROVISIONS) -Special Stilling Basin Existing Terrain 15.0 - 20.0 ft. PUMP-AROUND PUMP 8.0 in. (203 mm) of Sediment Control Stone Filter Fabric Not To Scale Note: Provide Stabilized Outlet to Streambank

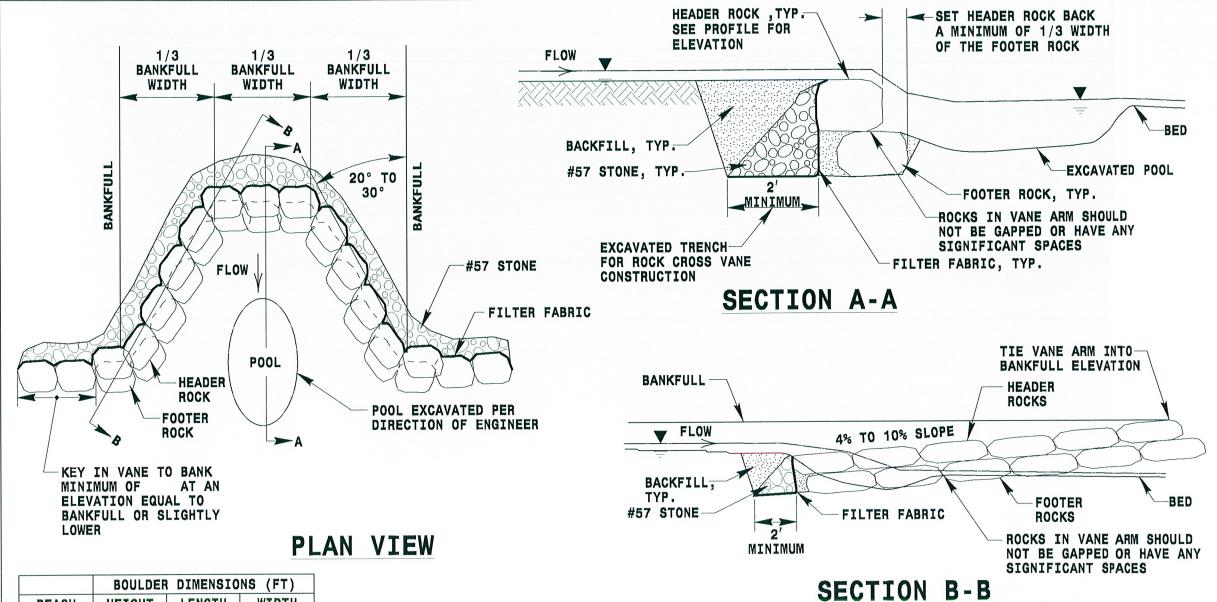

U-2707

SHEET NO.
NS-5
0.
HYDRAULICS ENGINEER

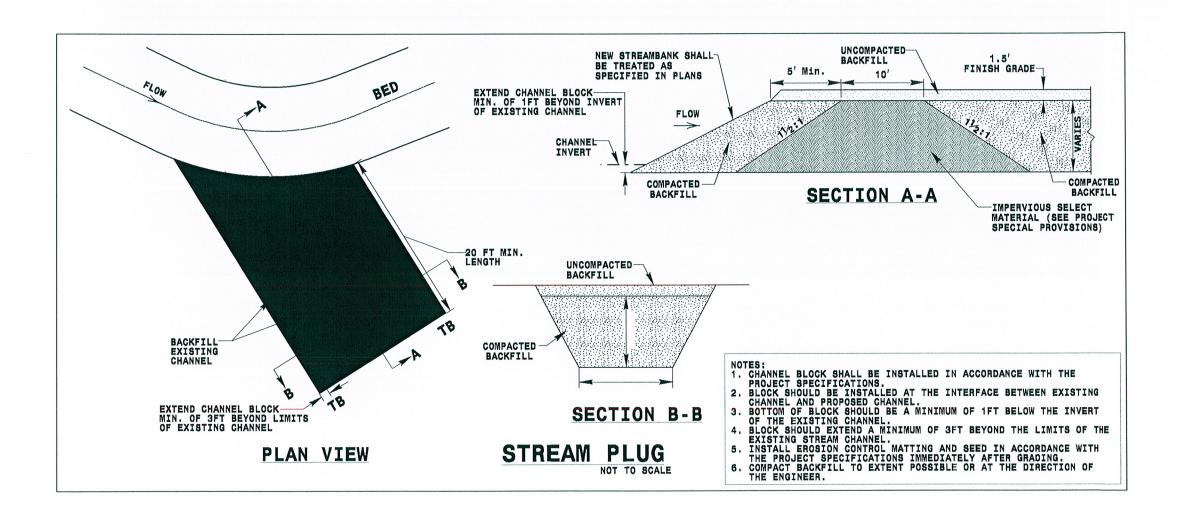
P-2018 09:46


PROJECT REFERENCE NO.	SHEET NO.
U-2707	NS-6
RW SHEET NO),
	HYDRAULICS Engineer


V-SEP-2018 10.02 VEngineering/Project F


	PROJECT REFERENCE NO.	SHEET NO.
- [U-2707	NS-7
ı	MW SHEET NO.	
		HYDRAULICS ENGINEER

20-SEP-2018 10:34

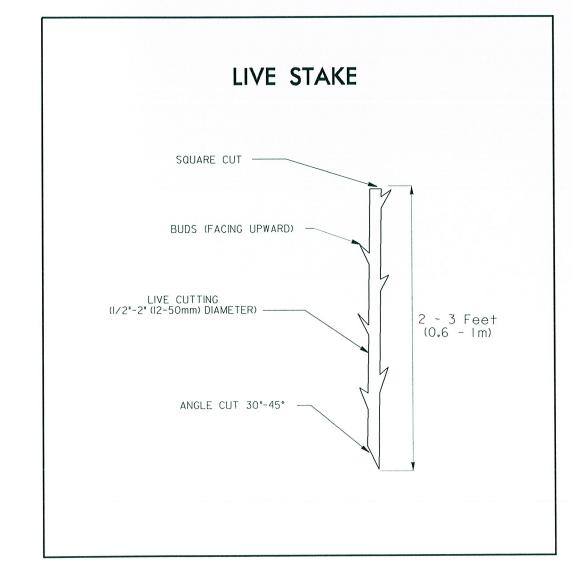

BOULDER DIMENSIONS (FT				
REACH	HEIGHT	LENGTH	WIDTH	
R1	2	4	3	
R2	2	4	3	

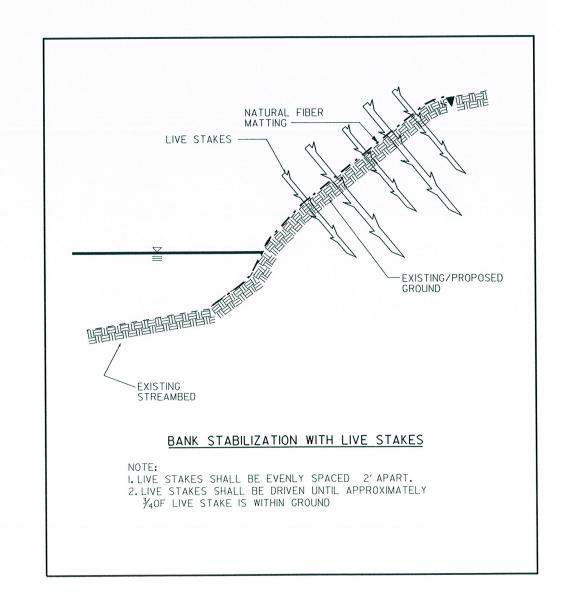
ROCK CROSS VANE DETAIL

NOT TO SCALE

- 1. DEEPEST PART OF POOL TO BE IN LINE WITH WHERE VANE ARM TIES INTO BANKFULL.
- 2. DO NOT EXCAVATE POOL TOO CLOSE TO FOOTER BOULDERS.
 3. CLASS "A" STONE CAN BE USED TO REDUCE VOIDS BETWEEN HEADERS AND FOOTERS.
- 4. COMPACT BACKFILL TO EXTENT POSSIBLE OR AT THE DIRECTION OF THE ENGINEER.
- 5. POOL DEPTH SHOULD BE 2 TO 3 TIMES BANKFULL DEPTH.

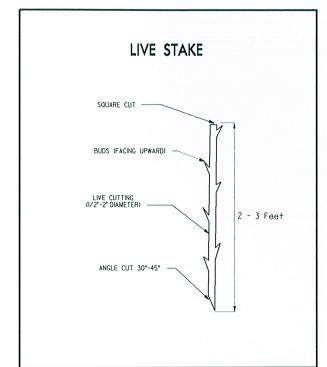
PROJECT REFERENCE NO	
U-2707	NS-9
RW SHEET N	Ю.
	HYDRAULICS ENGINEER

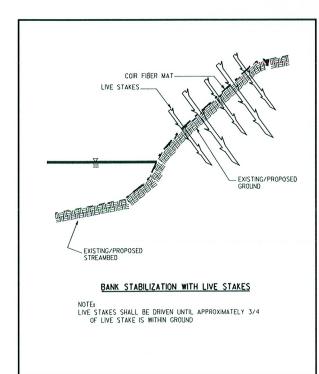


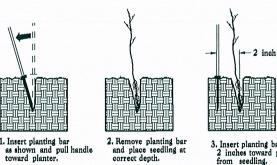

07_NS9_AB.dc

0/02/3	As Built Plans Pipe Crossing was deleted from plans	PROJECT REFERENCE NO. SHEET NO. U-2707 NS-10 RW SHEET NO. HYDRAULICS ENGINEER
	95"x67" CAAP PLAN & PROFILE VIEW	
RPYSIONS	18. III - 68.50	
	PROFILE WITH CROSS SECTIONS AT BAFFLES	
G-00T-2018 0918 S.Y.Enginserigs/Projess, Elles/U-2707/as-bullt/U2707_NS10_4B.dgn	PLAN VIEW	

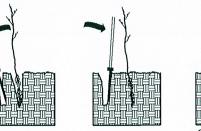
THE RESERVE OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN	THE RESIDENCE AND PERSONS ASSESSED.
PROJECT REFERENCE NO.	
U-2707	NS-II
RW SHEET NO	0.
	HYDRAULICS ENGINEER

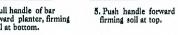

LIVE STAKE DETAIL




PLANTING DETAILS

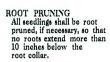
LIVE STAKES PLANTING DETAIL





JAREROOT PLANTING DETAIL DI33LE PLANTING METHOD USING THE K3C PLANTING 3AR

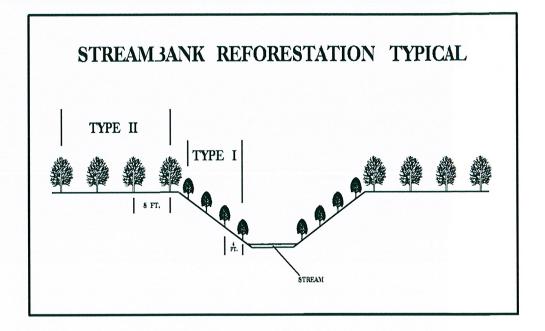
as shown and pull handle toward planter.



PLANTING NOTES:

PLANTING 3AG
During planting, seedlings
shall be kept in a moist
canvas bag or similar
container to prevent the
root systems from drying.

K3C PLANTING 3AR
Planting bar shall have a
blade with a triangular
cross section, and shall
be 12 inches long,
4 inches wide and
1 inch thick at center.


TYPE 1 STREAMBANK REFORESTATION SHALL BE PLANTED 3 FT. TO 5 FT. ON CENTER, RANDOM SPACING, AVERAGING 4 FT. ON CENTER, APPROXIMATELY 2724 PLANTS PER ACRE.

U-2707 RW SHEET NO.

HYDRAULICS ENGINEER

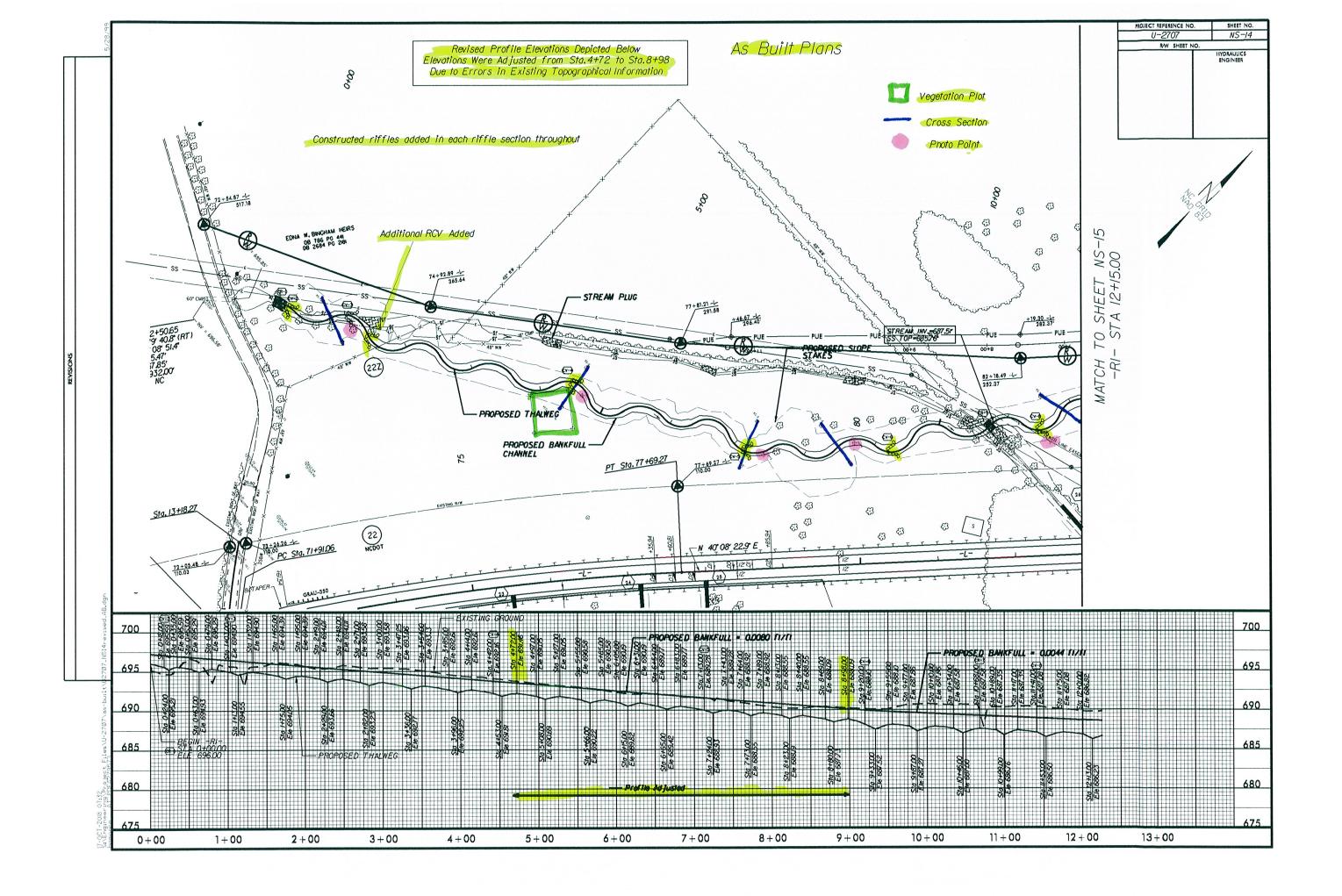
TYPE 2 STREAMBANK REFORESTATION SHALL BE PLANTED 6 FT. TO 10 FT. ON CENTER, RANDOM SPACING, AVERAGING 8 FT. ON CENTER, APPROXIMATELY 680 PLANTS PER ACRE.

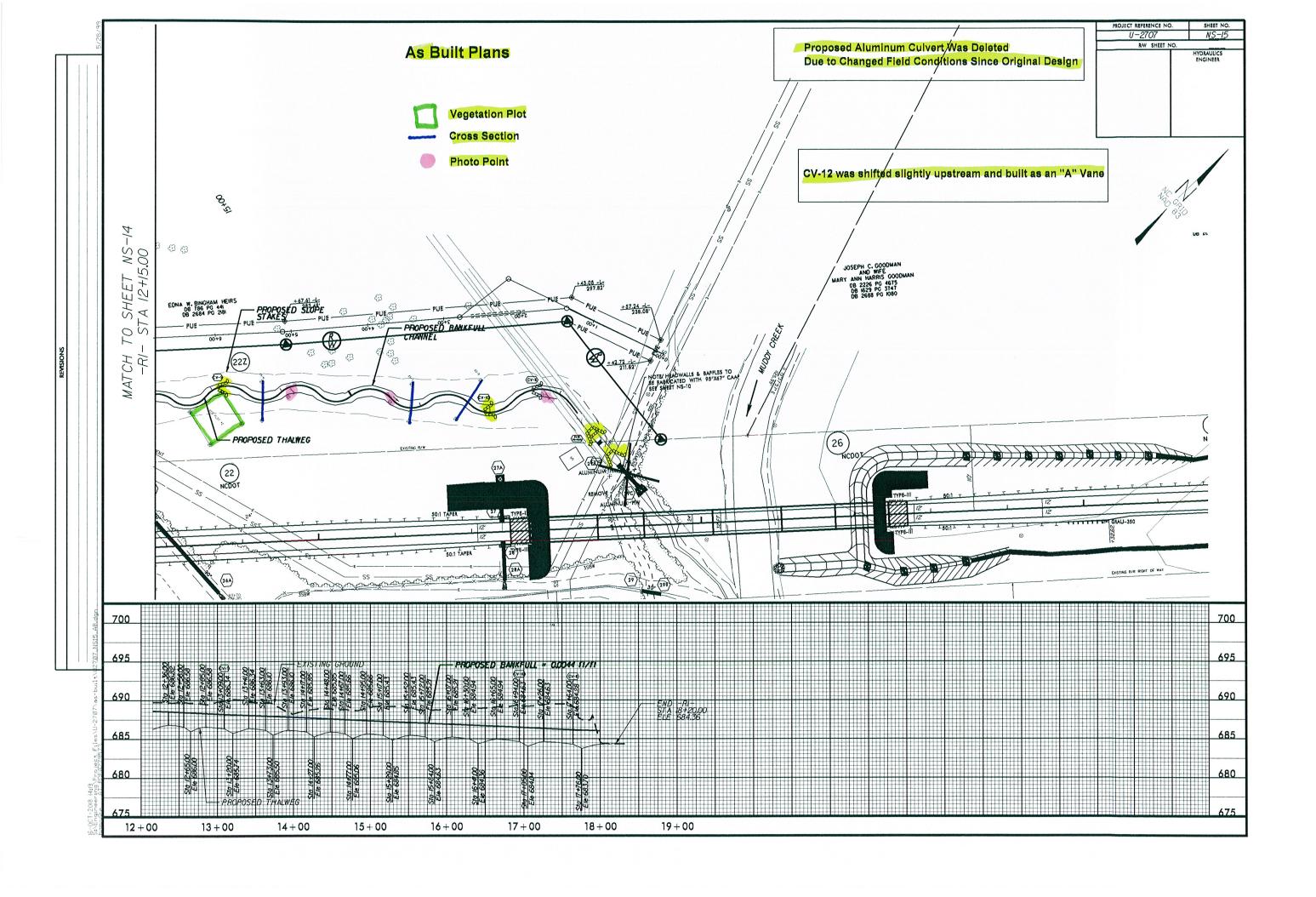
□ NOTE: TYPE 1 AND TYPE 2 STREAM3ANK REFORESTATION SHALL 3E PAID FOR AS "STREAMBANK REFORESTATION"

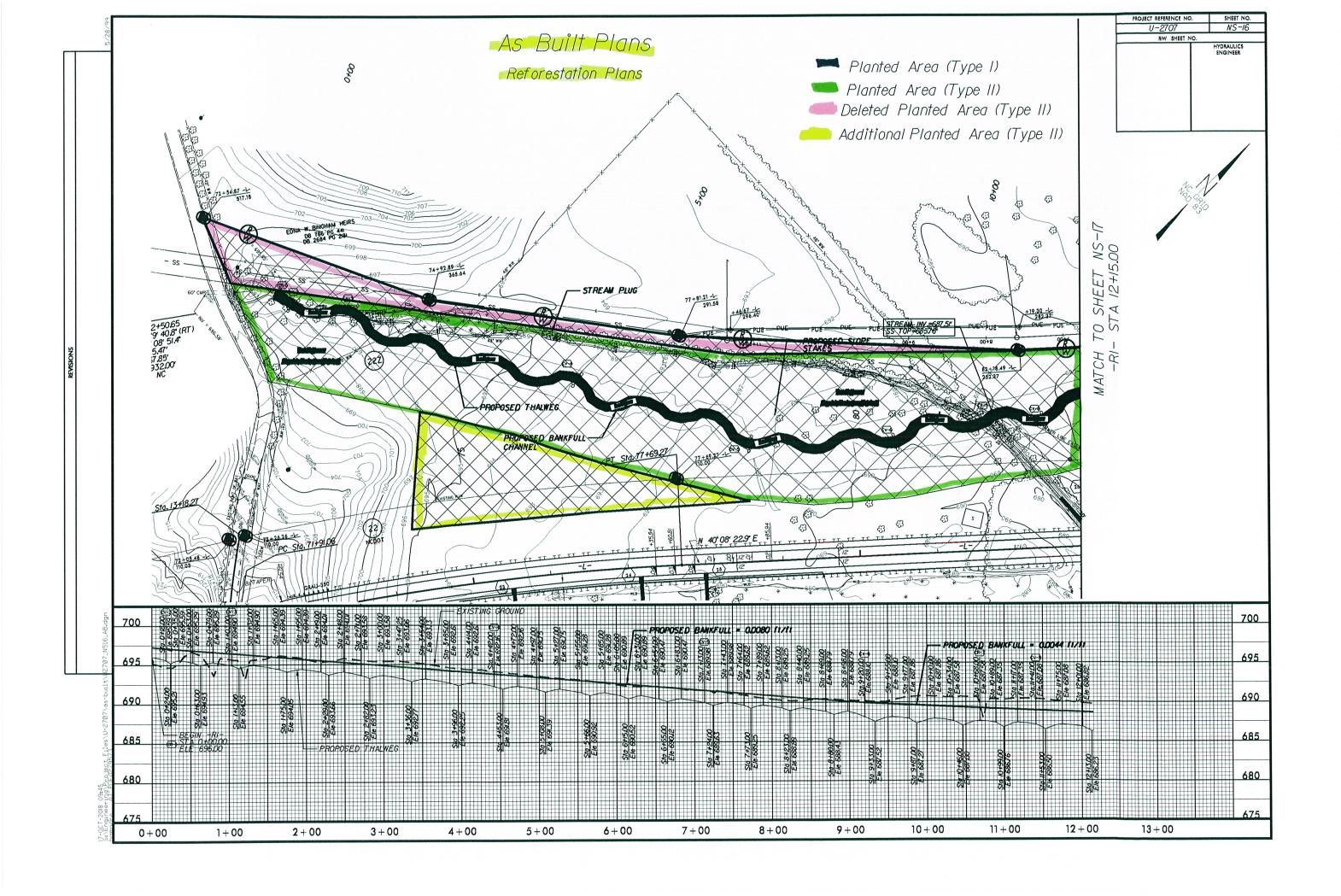
STREAMBANK REFORESTATION			
MIXTURE, TYPE, SIZE, AND FURNISH SHALL CO	ONFORM TO THE FOLLO	OWING	
TYPE 1			
50% SALIX NIGRA	3LACK WILLOW	2 ft - 3	3 ft LIVE STAKES
50% CORNUS AMOMUM	SILKY DOGWOOD	2 ft - 3	3 ft LIVE STAKES
TYPE 2			
25% FRAXINUS PENNSYLVANICA	GREEN ASH	1	12 in - 18 in 3R
25% QUERCUS PHELLOS	WILLOW OAK	1	12 in - 18 in 3R
25% QUERCUS MICHAUXII	SWAMPCHESTNUT	OAK 1	12 in = 18 in 3R
25% JETULA NIGRA	RIVER 3IRCH		12 in - 18 in 3R

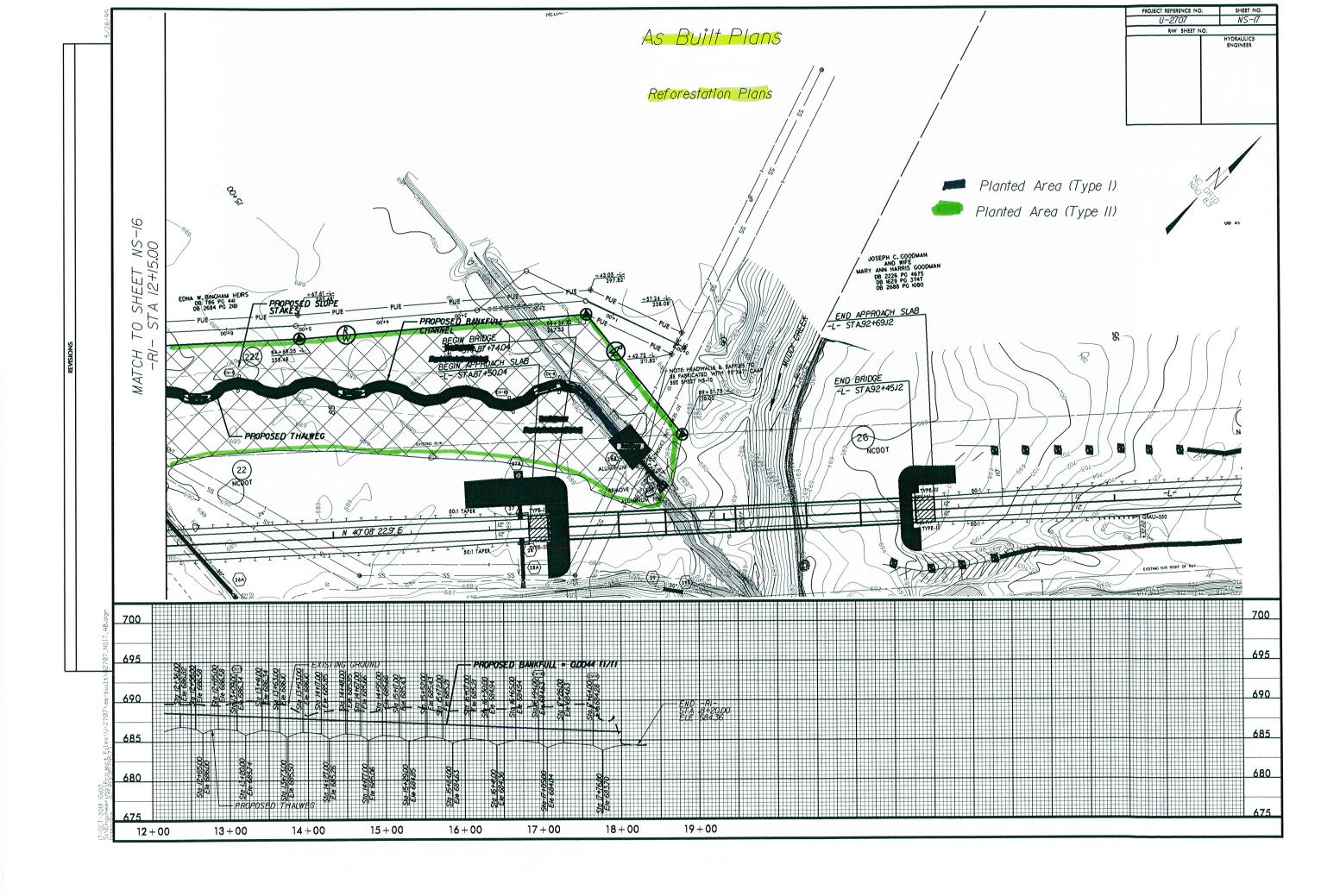
SEE PLAN SHEETS FOR AREAS TO 3E PLANTED

STREAMBANK REFORESTATION **DETAIL SHEET**


N.C.D.O.T. - ROADSIDE ENVIRONMENTAL UNIT


ALIGNMENT DATA REACH 1


W SHEET NO. HYDRAULICS ENGINEER	PROJECT REFERENCE	
HYDRAULICS	U-2707	NS-13
	RW SHEET	NO.


Beginning Point				: 		
Station 00+00.00						
Northing Easting		826494.3736 1597877.6360				
Station	Curve/Tangent Number	Curve/Tangent Length (ft)	Chord/Tangent Bearing	Chord Length (ft)	Deka Angle	Radius (ft)
00.00+0	Point 45000					
	Point 45000 to PC R1-1	10.48	N 61° 41' 44.10"E	20.00	242 441 20 7011 (727)	10.00
0+10.48	Curve R1-1	21.11	N 74° 02′ 24.49″ E	20.95	24° 41' 20.78" (RT)	49.00
0.00.10	PTRI-1 to PC R1-2	3.84	N 86° 23' 04.88"E	10.20	300 051 30 438 (\$75)	35.00
0÷35.43	Curve R1-2	42.82	N 51° 20′ 15.67″ E	40.20	70° 05' 38.42* (LT)	22.00
A . 02.04	PTR1-2 to PC R1-3	5.61 48.84	N 16° 17' 26.46"E N 61° 25' 29.75" E	43.94	90° 16' 06.57" (RT)	31.00
0+83.86	Curve R1-3 PTR1-3 to PC R1-4	9.73	S 73° 26' 26.97" E	42.34	30 10 00.37 (101)	21.00
1+42.42	Curve R1-4	54.40	N 62° 01' 43.35" E	49.09	89° 03' 39.3?" (LT)	35.00
17424Z	PTRI-4 to PC RI-5	7.49	N 17° 29' 53.66"E	13.03	G5 G5 55.21 (£1)	22.00
2÷04.32	Curve R1-5	44.23	N 59° 44′ 12.89" E	40.33	\$4° 28' 38.45" (RT)	30.00
= · v 1=14	PTRI-5 to PC RI-6	5.23	S 78° 01' 27.38" E			
2÷53.79	Curve R1-6	46.76	N 60° 06' 55.79" E	42.71	83° 43' 12.66" (LT)	32.00
	PTRI-6 to PC RI-7	7.03	N 18° 15' 19.46"E		, ,	
3+07.5?	Curve R1-?	47.16	N 56° 51' 09.79" E	43.67	77° 11' 40.66" (RT)	35.00
	PTR1-? to PC R1-8	7.41	S 84° 32' 59.88" E			
3+62.14	Curve R1-8	52.42	N 54° 51′ 46.39" E	48.14	81° 10' 27.46" (LT)	37.00
	PTR1-8 to PC R1-9	7.44	N 14° 16' 32.65*E			
4+22.00	Curve R1-9	50.33	N 63° 59' 44.48" E	44.25	99° 26' 23.64" (RT)	29.00
	PT R1-9 to PC R1-10	5.72	S 66° 17' 03.70" E			
4+78.05	Curve R1-10	49.84	N 62° 43′ 03.65" E	43.52	101° 59' 45.29" (LT)	28.00
	PTR1-10 to PC R1-11	4.89	N 11° 43' 11.01°E			
5+32.78	Curve R1-11	52.74	N 50° 27' 47.72" E	48.82	77° 29' 13.42" (RT)	39.00
	PTR1-11 to PC R1-12	6.18	N 89° 12' 24.43°E			
5+91.70	Curve R1-12	39.46	N 51° 31' 45.40" E	36.67	75° 21' 18.07° (LT)	30.00
	PTR1-12 to PC R1-13	4.64	N 13° 51' 06.36"E			23.60
6+35.80	Curve R1-13	47.52	N 60° 47' 33.87" E	42.38	93° 52' 55.01" (RT)	29.00
	PTR1-13 to PC R1-14	6.15	S 72° 15' 58.62" E	53.70	0.45 4.71 47 5.70 (7.75)	16.60
6+89.48	Curve RI-14	59.25	N 60° 35' 07.59" E	52.78	94° 17' 47.57° (LT)	36.00
7+54.95	PTR1-14 to PC R1-15	6.23	N 13° 26' 13.81°E	22.16	606 CBI BO 40" /PT)	28.00
	Curve R1-15	34.19	N 48° 25' 14.01" E	32.11	69° 58' 00.40" (RT)	26.00
	PTR1-15 to PC R1-16	5.62	N 83° 24' 14.21°E	41.26	83° 27' 02.58° (LT)	31.00
7+94.77	Curve R1-16	45.15 10.20	N 41° 40' 42.92° E N 0° 02' 48.38° W	+1.20	03 21 02.30 (12)	31.00
0:50.12	PTR1-16 to PC R1-17 Curve R1-17	49.30	N 40° 18' 30.95" E	45.33	80° 42' 38.65" (RT)	35.00
8+50.12	PTR1-17 to PC R1-18	5.03	N 80° 39' 50.28"E	73.33	00 12 30.03 (ALI)	55.00
9+04.46	Curve R1-18	51.70	N 31° 17' 40.66" E	45.54	98° 44' 19.23° (LT)	30.00
9+62.01	PTR1-18 to PC R1-19	5.85	N 18° 04' 28.96" W	121211	1	
	Curve RI-19	49.02	N 30° 21' 01.43" E	43.39	96° 51' 00.77" (RT)	29.00
U.E.VI	PTR1-19 to PC R1-20	4.89	N 78° 46' 31.82"E			
10+15.92	Curve R1-20	53.31	N 38° 35' 21.06" E	49.04	80° 22' 21.52° (LT)	38.00
10:12:32	PTR1-20 to PC R1-21	7.68	N 1° 35' 49.70" W			
10+76.91	Curve R1-21	39.93	N 39° 15' 33.94" E	36.63	81° 42' 47.28" (RT)	28.00
10:70.31	PTR1-21 to PC R1-22	6.74	N 80° 06' 57.58°E			
11+23.58	Curve R1-22	52.12	N 28° 37' 28.08" E	45.39	102° 58' 59.00" (LT)	29.00
	PTR1-22 to PC R1-23	4.45	N 22° 52' 01.42" W			
11+80.16	Curve R1-23	56.65	N 27° 51' 09.41" E	49.54	101° 26' 21.65" (RT)	32.00
	PTR1-23 to PC R1-24	5.17	N 78° 34' 20.23"E			
12÷41.98	Curve R1-24	43.64	N 36° 53' 51.67" E	39.89	83° 20' 57.13" (LT)	30.00
	PTR1-24 to PC R1-25	5.29	N 4° 46' 36.90" W			
12÷90.92	Curve R1-25	51.80	N 36° 26' 53.31" E	47.45	82° 27' 00.41" (RT)	36.00
	PTR1-25 to PC R1-26	10.49	N 77° 40′ 23.51″E			
13÷53.21	Curve R1-26	39.24	N 41° 24' 49.79" E	36.67	72° 31' 07.44" (LT)	31.00

Curve/Tangent Number PTR1-26 to PC R1-27 Curve R1-27 PTR1-27 to PC R1-28 Curve R1-28 PTR1-28 to PC R1-29	8.81 47.45 9.08	Chord/Tangent Bearing N 5° 09' 16.07" E N 43° 59' 48.18" E	Chord Length (ft)	272 141 44 22 U (P)T	
Curve R1-27 PTR1-27 to PC R1-28 Curve R1-28	47.45		12.01	275 141 4 4 22 H (277)	
PTR1-27 to PC R1-28 Curve R1-28			43.90	77° 41' 04.22" (RT)	35.00
Curve R1-28		N 82° 50' 20.29" E	12.20	// 12 0 112 122	
	37.68	N 45° 37' 08.29" E	35.08	74° 26' 23.99" (LT)	29.00
P1 KI-28 to PC KI-29 1	8.64	N 8° 23' 56.30" E	22.00	77 20 25.55 (2.7)	20.00
			46.78	78° 25' 08.69" (RT)	37.00
Curve R1-29	50.64	N 47° 36' 30.64" E	40.10	76 23 03.03 (101)	21.00
PTR1-29 to PC R1-30	6.20	N 86° 49' 04.99" E	43.09	78° 38' 56.63" (LT)	34.00
Curve R1-30	46.6?	N 47° 29' 36.67" E	43.09	/3 38 30.03 (E1)	24.00
PTR1-30 to PC R1-31	7.87	N 8° 10' 08.36" E	17.00	74° 48' 38.09" (RT)	39.00
Curve R1-31	50.92	N 45° 34' 27.41" E	47.38	74" 48 38.09 (R1)	39.00
			19.51	220 221 24 209 477	24.00
			47.54	82° 38' 20.30" (L1)	36.00
					10.04
			71.70	94° 02′ 36.99" (RT)	49.00
PC R1-33 to Point 45001	16.30	S 85° 37' 02.86" E			
Point 45001					
	PTR1-31 to PC R1-32 Curve R1-32 PTR1-32 to PC R1-33 Curve R1-33 PC R1-33 to Point 45001	PTR1-31 to PC R1-32 8.06 Curve R1-32 51.92 PTR1-32 to PC R1-33 11.79 Curve R1-33 80.43 PC R1-33 to Point 45001 16.30	PTR1-31 to PC R1-32 8.06 N 82° 58′ 46.45″ E Curve R1-32 51.92 N 41° 39′ 33.30″ E PTR1-32 to PC R1-33 11.79 N 0° 20′ 20.15″ E Curve R1-33 80.43 N 47° 21′ 38.65″ E PC R1-33 to Point 45001 16.30 S 85° 37′ 02.86″ E	PTR1-31 to PC R1-32 8.06 N 82° 58′ 46.45″ E Curve R1-32 51.92 N 41° 39′ 33.30″ E 47.54 PTR1-32 to PC R1-33 11.79 N 0° 20′ 20.15″ E 71.70 Curve R1-33 80.43 N 47° 21′ 38.65″ E 71.70 PC R1-33 to Point 45001 16.30 8 85° 37′ 02.86″ E	PTR1-31 to PC R1-32 8.06 N 82° 58' 46.45" E Curve R1-32 51.92 N 41° 39' 33.30" E 47.54 82° 38' 26.30" (LT) PTR1-32 to PC R1-33 11.79 N 0° 20' 20.15" E 71.70 94° 02' 36.99" (RT) Curve R1-33 80.43 N 47° 21' 38.65" E 71.70 94° 02' 36.99" (RT) PC R1-33 to Point 45001 16.30 S 85° 37' 02.86" E

